Benha University
Faculty of Engineering (Shoubra)
Mechanical Engineering Department

Heat Transfer

1. A long bar of rectangular cross section is 60 mm by 90 mm on a side and has thermal conductivity of $1 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}$. One surface is exposed to a convection process with air at $100^{\circ} \mathrm{C}$ and a convection coefficient of $100 \mathrm{~W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}$, while the remaining surfaces are maintained at $50^{\circ} \mathrm{C}$. Using a grid spacing of 30 mm and the Gauss-Seidel method, determine the nodal temperatures and the heat rate per unit length normal to the
 page into the bar from the air.
2. Consider the two dimensional grid $(\Delta x=\Delta y)$ representing steady state conditions with no internal volumetric generation for a system with thermal conductivity k . One of the boundaries is maintained at a constant temperature T_{s} while the others are adiabatic. Derive an expression for the heat rate per unit length normal to the page crossing the isothermal boundary $\left(T_{s}\right)$.

3. Consider the square channel shown in the sketch operating under steady state conditions. The inner surface of the channel is at a uniform temperature of 600 K , while the outer surface is exposed to convection with a fluid at 300 K and a convection coefficient of $50 \mathrm{~W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}$. From a symmetrical element of the channel, a two dimensional grid has been constructed

$$
\begin{array}{lll}
\Delta \mathrm{x}=\Delta \mathrm{y}=0.01 \mathrm{~m} & \mathrm{~T}_{1}=430 \mathrm{~K} & \mathrm{~T}_{6}=492 \mathrm{~K} \\
\mathrm{k}=1 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C} & \mathrm{~T}_{3}=394 \mathrm{~K} & \mathrm{~T}_{8}=\mathrm{T}_{9}=600 \mathrm{~K}
\end{array}
$$ and the nodes labeled. The temperatures for nodes $1,3,6,8$ and 9 are identified.

a) Determine the temperature $\mathrm{T}_{2}, \mathrm{~T}_{4}$ and T_{7}.
b) Calculate the heat loss per unit length of the channel.
4. The steady state temperatures (${ }^{\circ} \mathrm{C}$) associated with selected nodal of a two dimensional system having a thermal conductivity of $1.5 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}$ are shown on the accompanying grid.
a) Determine the temperature at nodes 1,2
b) Calculate the heat transfer rate per unit thickness normal to the page

from the system to the fluid.
5. A steady state, finite difference analysis has been performed on a cylindrical fin with a diameter of 12 mm and a thermal conductivity of $15 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}$. The convection process is characterized by a fluid temperature of $25^{\circ} \mathrm{C}$ and a heat transfer coefficient of $25 \mathrm{~W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}$.
a) The temperature for the first three nodes separated by a spatial increment of $\Delta x=10 \mathrm{~mm}$, are given in the sketch. Determine the fin heat rate.
b) Determine the temperature at node $3, \mathrm{~T}_{3}$.

